大坝水库在实现可持续发展目标和全球气候目标方面发挥着重要作用。但是,特别是对于小型水坝水库,其地理位置缺乏一致的数据。为了解决此数据差距,一种有前途的方法是根据全球可用的遥感图像进行自动水坝水库提取。它可以被认为是水体提取的精细颗粒任务,涉及在图像中提取水区,然后将水坝储层与天然水体分开。我们提出了一种基于新型的深神经网络(DNN)管道,该管道将大坝水库提取到水体分割和大坝储层识别中。首先将水体与分割模型中的背景土地分开,然后将每个水体预测为大坝储层或分类模型中的天然水体。对于以前的一步,将跨图像的点级度量学习注入分段模型,以解决水域和土地区域之间的轮廓模棱两可。对于后一个步骤,将带有簇的三重态的先前引导的度量学习注入到分类模型中,以根据储层簇在细粒度中优化图像嵌入空间。为了促进未来的研究,我们建立了一个带有地球图像数据的基准数据集,并从西非和印度的河流盆地标记为人类标记的水库。在水体分割任务,水坝水库识别任务和关节坝储层提取任务中,对这个基准进行了广泛的实验。将我们的方法与艺术方法的方法进行比较时,已经在各自的任务中观察到了卓越的性能。
translated by 谷歌翻译
深度神经网络(DNN)模型越来越多地使用新的复制测试数据集进行评估,这些数据集经过精心创建,类似于较旧的和流行的基准数据集。但是,与期望相反,DNN分类模型在这些复制测试数据集上的准确性上表现出显着,一致且在很大程度上无法解释的降解。虽然流行的评估方法是通过利用各自测试数据集中可用的所有数据点来评估模型的准确性,但我们认为这样做会阻碍我们充分捕获DNN模型的行为以及对其准确性的现实期望。因此,我们提出了一种原则性评估协议,该协议适用于在多个测试数据集上对DNN模型的准确性进行比较研究,利用可以使用不同标准(包括与不确定性相关信息)选择的数据点子集进行的子集。通过使用此新评估协议,我们确定了(1)CIFAR-10和Imagenet数据集上$ 564 $ DNN型号的准确性,以及(2)其复制数据集。我们的实验结果表明,已观察到的基准数据集及其复制之间观察到的准确性降解始终较低(即模型在复制测试数据集上的性能更好),而不是在已发表的作品中报告的准确性退化,并依靠这些已发表的作品依赖于常规评估。不利用不确定性相关信息的方法。
translated by 谷歌翻译
虽然ImageNet最初被提出为计算机愿景领域的性能基准的数据集,但它也支持各种其他研究工作。对抗机器学习是一种这样的研究努力,采用欺骗性输入来制作错误的预测。为了评估对抗机器学习领域的攻击和防御,Imagenet仍然是最常用的数据集之一。但是,尚待调查的主题是对抗性实例被错误分类的课程的性质。在本文中,我们对这些错误分类类进行了详细的分析,利用了想象群类层次结构并测量了对逆势示例的不受干扰的起源中上述类别的相对位置。我们发现71%的普遍例子,即实现模型 - 模型对抗性转移性的普遍例子被错误分类为对底层源图像预测的前5个类之一。我们还发现,实际上,大量未确定的错误分类子集实际上是分类到语义上类似的课程。根据这些调查结果,我们讨论在评估未确定的对抗性成功时需要考虑到Imageenet类层次结构。此外,我们倡导未来的研究努力,以合并分类信息。
translated by 谷歌翻译
虽然近年来,深度神经网络(DNN)的采用率大幅增加,但尚未发现对对抗对抗例子的脆弱性的解决方案。因此,大量的研究工作致力于解决这种弱点,许多研究通常使用源图像的子集来生成对抗示例,将该子集中的每个图像视为相等。我们证明,实际上,不是每个来源图像都同样适用于这种评估。为此,我们设计了一个大规模的模型到模型转移性方案,我们通过利用三种最常用的攻击来精心分析来自想象成中的每个合适的源图像中的每个合适的源图像。在这种可转移性方案中,这涉及七种不同的DNN模型,包括最近提出的视觉变压器,我们揭示了在模型到模型转移性成功中获得高达12.5美元的差异,平均为1.01美元L_2 $扰动,平均每平均$ 0.03 $($ 8/225 $),当所有合适的候选人中随机采样1000美元的源图像时,每次$ 0.03 $($ 8/225 $)。然后,我们采取一个第一个步骤评估用于创造逆势示例的图像的稳健性,提出了许多简单但有效的方法来识别不合适的源图像,从而使得可以减轻实验中的极端情况并支持高质量的基准测试。
translated by 谷歌翻译
Modeling lies at the core of both the financial and the insurance industry for a wide variety of tasks. The rise and development of machine learning and deep learning models have created many opportunities to improve our modeling toolbox. Breakthroughs in these fields often come with the requirement of large amounts of data. Such large datasets are often not publicly available in finance and insurance, mainly due to privacy and ethics concerns. This lack of data is currently one of the main hurdles in developing better models. One possible option to alleviating this issue is generative modeling. Generative models are capable of simulating fake but realistic-looking data, also referred to as synthetic data, that can be shared more freely. Generative Adversarial Networks (GANs) is such a model that increases our capacity to fit very high-dimensional distributions of data. While research on GANs is an active topic in fields like computer vision, they have found limited adoption within the human sciences, like economics and insurance. Reason for this is that in these fields, most questions are inherently about identification of causal effects, while to this day neural networks, which are at the center of the GAN framework, focus mostly on high-dimensional correlations. In this paper we study the causal preservation capabilities of GANs and whether the produced synthetic data can reliably be used to answer causal questions. This is done by performing causal analyses on the synthetic data, produced by a GAN, with increasingly more lenient assumptions. We consider the cross-sectional case, the time series case and the case with a complete structural model. It is shown that in the simple cross-sectional scenario where correlation equals causation the GAN preserves causality, but that challenges arise for more advanced analyses.
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
We propose Hierarchical ProtoPNet: an interpretable network that explains its reasoning process by considering the hierarchical relationship between classes. Different from previous methods that explain their reasoning process by dissecting the input image and finding the prototypical parts responsible for the classification, we propose to explain the reasoning process for video action classification by dissecting the input video frames on multiple levels of the class hierarchy. The explanations leverage the hierarchy to deal with uncertainty, akin to human reasoning: When we observe water and human activity, but no definitive action it can be recognized as the water sports parent class. Only after observing a person swimming can we definitively refine it to the swimming action. Experiments on ActivityNet and UCF-101 show performance improvements while providing multi-level explanations.
translated by 谷歌翻译
Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology, $\textit{e.g.}$, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules $\textit{de novo}$. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a $\textit{renaissance}$ in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead.
translated by 谷歌翻译
The ability to convert reciprocating, i.e., alternating, actuation into rotary motion using linkages is hindered fundamentally by their poor torque transmission capability around kinematic singularity configurations. Here, we harness the elastic potential energy of a linear spring attached to the coupler link of four-bar mechanisms to manipulate force transmission around the kinematic singularities. We developed a theoretical model to explore the parameter space for proper force transmission in slider-crank and rocker-crank four-bar kinematics. Finally, we verified the proposed model and methodology by building and testing a macro-scale prototype of a slider-crank mechanism. We expect this approach to enable the development of small-scale rotary engines and robotic devices with closed kinematic chains dealing with serial kinematic singularities, such as linkages and parallel manipulators.
translated by 谷歌翻译
Prevailing methods for assessing and comparing generative AIs incentivize responses that serve a hypothetical representative individual. Evaluating models in these terms presumes homogeneous preferences across the population and engenders selection of agglomerative AIs, which fail to represent the diverse range of interests across individuals. We propose an alternative evaluation method that instead prioritizes inclusive AIs, which provably retain the requisite knowledge not only for subsequent response customization to particular segments of the population but also for utility-maximizing decisions.
translated by 谷歌翻译